Extracellular regulators of axonal growth in the adult central nervous system.
نویسندگان
چکیده
Robust axonal growth is required during development to establish neuronal connectivity. However, stable fibre patterns are necessary to maintain adult mammalian central nervous system (CNS) function. After adult CNS injury, factors that maintain axonal stability limit the recovery of function. Extracellular molecules play an important role in preserving the stability of the adult CNS axons and in restricting recovery from pathological damage. Adult axonal growth inhibitors include a group of proteins on the oligodendrocyte, Nogo-A, myelin-associated glycoprotein, oligodendrocyte-myelin glycoprotein and ephrin-B3, which interact with axonal receptors, such as NgR1 and EphA4. Extracellular proteoglycans containing chondroitin sulphates also inhibit axonal sprouting in the adult CNS, particularly at the sites of astroglial scar formation. Therapeutic perturbations of these extracellular axonal growth inhibitors and their receptors or signalling mechanisms provide a degree of axonal sprouting and regeneration in the adult CNS. After CNS injury, such interventions support a partial return of neurological function.
منابع مشابه
P 64: Micro-Rna Disorder and Multiple Sclerosis
Noncoding ribonucleic acids micro-RNA is involved in the regulation of gene expression have major roles in the post-transcriptional level. A micro-RNA alone several causes down regulation of mRNA transcript of the target. Thus, small changes in the expression of a micro RNA may lead to significant changes in gene expression are different. Micro- RNA as key regulators of immune cell lineage diff...
متن کاملLaminar Organization of Cerebral Cortex in Transforming Growth Factor Beta Mutant Mice
Transforming growth factor betas (TGF?s) are one of the most widespread and versatile cytokines. The three mammalian TGF? isoforms, ?1, ?2, and ?3, and their receptors regulate proliferation of neuronal precursors as well as survival and differentiation in neurons of developing and adult nervous system. Functions of TGF?s has a wide spectrum ranging from regulating cell proliferation and differ...
متن کاملCentral nervous system injury-induced repulsive guidance molecule expression in the adult human brain.
BACKGROUND The repulsive guidance molecule (RGM) is involved in formation of the central nervous system during development by moderating the repulsion of growing axons. However, the role of RGM in adult central nervous system lesions remains to be clarified. OBJECTIVE To identify and determine RGM expression in adult brains with focal cerebral ischemia or traumatic brain injury and in neuropa...
متن کاملADENOSINE IN THE CENTRAL NERVOUS SYSTEM
Besides being a metabolite of nucleotides like ATP, adenosine is a mediator of neuronal function in the central nervous system. Its actions are mediated by at least three extracellular receptors. In this review different aspects of adenosine such as biosynthesis, release, inactivation and its receptors are discussed. It also covers pre- and postsynaptic effects as well as postreceptor mecha...
متن کاملWhy does the central nervous system not regenerate after injury?
A major problem for neuroscientists and clinicians is why the central nervous system shows ineffective regeneration after injury. Injured peripheral nerve fibers reform their connections, whereas those in injured spinal cord never re-grow. Insights into the mechanisms for repair and restoration of function after spinal cord injury have been obtained by experiments showing that injured nerve cel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Philosophical transactions of the Royal Society of London. Series B, Biological sciences
دوره 361 1473 شماره
صفحات -
تاریخ انتشار 2006